

Valutazione dei progetti Del. 39/10: obiettivi di breve e medio termine

Paolo Pelacchi, Fabrizio Pilo, Roberto Turri

Smart Grid

Technical Issue	BAU Distribution Network	Active Distribution Network
Voltage rise/drop	Limits/bands for demand and generation connection/operation Generation tripping Capacitor banks	Coordinated volt-var control Static var compensators Coordinated dispatch of DER On-line reconfiguration
Hosting Capacity	Network reinforcement (e.g., lines/transformers)	Coordinated dispatch of DER On-line reconfiguration
Reactive Power Support	Dependency on transmission network Capacitor banks Limits/bands for demand and generation connection/operation	Coordinated volt-var control Static var compensators Coordinated reactive power dispatch of DER
Protection	Adjustment of protection settings New protection elements Limits for generation connection Fault ride through specifications for generation	On-line reconfiguration Dynamic protection settings
Ageing	Strict network designs specifications based on technical and economic analyses	Asset condition monitoring

Fonte CIGRE WG SC.19 - Technical report approvato in Giappone, ottobre 2013

Delibera 39/10 – Selezione dei Progetti

- Applicazione della Regolazione Input Based non essendo ancora possibile la definizione di una metrica per una regolazione Output based
- Individuazione delle CP in cui la GD pone problemi di gestione e regolazione (inversione del flusso per un tempo significativo)
- Definizione di Hosting Capacity (quantitativo di GD che si può connettere al sistema senza interventi infrastrutturali)
- Definizione di un indice per valutare il grado di rispondenza dei progetti alla delibera e fissare anche una gradazione di benefici attesi in termini di incremento della Hosting Capacity
 - Difficoltà di calcolo e approcci condivisi nelle modalità di calcolo (CIGRE C6.19)
 - Indice su Hosting Capacity utile ex-ante, ma di difficile applicazione ex-post ...

Elementi Comuni ai Progetti Del. 39/10

- Automazione e Riconfigurazione di Rete avanzata (FLISR)
 - Latenza minima (decine di millisecondi)
 - Protezioni intelligenti per la localizzazione e la separazione del tronco guasto (FLISR – Fault Location Isolation and Service Restoration) integrate con SCADA di nuova concezione
 - Possibilità di raggiungere anche prosumers BT (attraverso router di Cabina Secondaria)
 - Selettività logica
 - · Localizzazione dei tronchi guasti
 - Impiego del telescatto non solo per evitare isola indesiderata, ma per comandare in modo selettivo il distacco di alcuni generatori

Criticità

- Scelta del sistema di TLC adatto (fibra, wireless, LTE, GPRS, ecc.)
- Coinvolgimento di aziende del ramo TLC (investimenti in aree a bassa densità abitativa sono poco appetibili – tempi di ritorno troppo lunghi)

Elementi Comuni ai Progetti Del. 39/10

Regolazione della tensione (variazioni lente – 10-20")

- Regolazione della tensione mediante controllo a livello di cabina secondaria
- Coinvolgimento su base volontaria degli utenti presenti nell'area
- Comunicazione inverter e regolatori di macchina (in certi casi anche macchine rotanti)
- Sviluppo di regolatori (Q(V)) per regolazione VOLT/VAR
- Integrazione con sistemi SCADA DSO e TSO

Criticità

- Sistemi di telecomunicazione
- Difficoltà di interfacciamento lato produttore (IEC 61850 non abbastanza)
- Partecipazione volontaria dei produttori e costi tutti lato distributore
- Assenza quadro regolatorio (Mercato dei servizi di dispacciamento a livello distribuzione)

Progetti Del. 39/10 e interfacciamento TSO-DSO

- Interfacciamento per Controllo
 - Allegato A70 Rendere CP equivalente ad un generatore
 - Disaggregazione per tipologia di produzione (eolico, solare, altro.)
 - Disaggregazione produzione/consumo
 - Aggiornamento dati 20"
- Interfacciamento per Security
 - Produzione equivalente solare sotto EAC
 - Produzione equivalente eolico sotto EAC
 - Carico asservito a EAC
 - Aggiornamento dati 20"

Pricipi Ispiratori Regolazione Output Based

- Definizione di Smart Grid
- Definizione di livelli di "smartizzazione"
- Definizione di una metrica prestazionale per ogni tipologia di smartizzazione
- Misura dei risultati ottenuti rispetto alla metrica condivisa
- Meccanismo regolatorio Output Based/Input Based

Esempio – Rete Smart Entry Level

- Adotta sistemi di comunicazione che permettono il telescatto dei generatori
- Fornisce al TSO le informazioni disaggregate necessarie per controllo e sicurezza

Metrica possibile

- Misurare il miglioramento della continuità del servizio per i produttori (possibile correlare il numero di distacchi generatori evitati grazie al rilassamento della protezione di interfaccia, che ovviamente prende soglia strette in assenza di TLC)
- Misurare quante volte la protezione di interfaccia si è rimessa in modalità locale (affidabilità del sistema di TLC adottato in relazione alla latenza necessaria)
- Grado di capillarità del telescatto (possibilità di raggiungere anche utenti BT)

Esempio – Rete Base Level

- Adotta sistemi di automazione di rete avanzata
- Permette il telescatto dei generatori
- Fornisce al TSO le informazioni disaggregate necessarie per controllo e sicurezza
- Metrica possibile
 - Misurare il miglioramento della continuità del servizio per i produttori grazie al maggiore grado di selettività ottenuto con FLISR avanzato
 - Misurare quante volte la protezione di interfaccia si è rimessa in modalità locale (affidabilità del sistema di TLC adottato in relazione alla latenza necessaria)
 - Grado di capillarità (possibilità di raggiungere anche utenti BT)
 - **–**

Esempio – Rete Smart Advanced Level

- Adotta sistemi di regolazione di tensione centralizzati V-Q
- Adotta sistemi di automazione di rete avanzata (Advanced FLISR)
- Fornisce al TSO le informazioni disaggregate necessarie per controllo e sicurezza
- Permette il telescatto dei generatori

Metrica possibile

- Misurare il miglioramento della continuità del servizio per i produttori grazie al maggiore grado di selettività ottenuto con FLISR avanzato ed alla regolazione di tensione (minori distacchi per sovratensioni)
- Misurare il miglioramento della continuità dell'alimentazione e della qualità della tensione per i consumatori
- Misurare quante volte la protezione di interfaccia si è rimessa in modalità locale (affidabilità del sistema di TLC adottato in relazione alla latenza necessaria)
- Grado di capillarità (possibilità di raggiungere anche utenti BT)
- **–**

Esempio – Rete Smart Full Operation

- Adotta sistemi di regolazione di tensione centralizzati/decentralizzati in grado di permettere l'implementazione del mercato locale dei servizi di dispacciamento, coinvolgendo produzione, domanda e accumulo energetico
- Adotta sistemi di automazione di rete avanzata
- Fornisce al TSO le informazioni disaggregate necessarie per controllo e sicurezza
- Permette il telescatto dei generatori
- Metrica possibile
 - Misurare l'efficienza economica del mercato dei servizi di dispacciamento
 - Misurare il miglioramento della continuità del servizio per i produttori grazie al maggiore grado di selettività ottenuto con FLISR avanzato ed alla regolazione di tensione (minori distacchi per sovratensioni)
 - Misurare il miglioramento della continuità dell'alimentazione e della qualità della tensione per i consumatori
 - Misurare quante volte la protezione di interfaccia si è rimessa in modalità locale (affidabilità del sistema di TLC adottato in relazione alla latenza necessaria)
 - Grado di capillarità (possibilità di raggiungere anche utenti BT)

Valutazione ex-post progetti Del. 39/10

- Tutti i progetti Del. 39/10 presentano soluzioni che rientrano nelle classificazioni ipotizzate
- Saranno richiesti dati misurati che permettano l'analisi alla luce di diverse possibili metriche di valutazione
- La valutazione sarà fatta considerando quanto suggerito da organismi/istituzioni internazionali (IEC, EPRI, ISGAN, ecc.)
- Objettivo 0:
 - Verificare la rispondenza del progetto as built con il progetto presentato
- Objettivo 1:
 - Definire livelli di "smartizzazione" tecnicamente realizzabili e la cui efficacia sia stata dimostrata da adeguata sperimentazione
- Obiettivo 2:
 - Verificare l'applicabilità delle metriche ipotizzate al fine di una possibile regolazione output/based

